1536. Minimum Swaps to Arrange a Binary Grid
Description
Given an n x n
binary grid
, in one step you can choose two adjacent rows of the grid and swap them.
A grid is said to be valid if all the cells above the main diagonal are zeros.
Return the minimum number of steps needed to make the grid valid, or -1 if the grid cannot be valid.
The main diagonal of a grid is the diagonal that starts at cell (1, 1)
and ends at cell (n, n)
.
Example 1:
Input: grid = [[0,0,1],[1,1,0],[1,0,0]] Output: 3
Example 2:
Input: grid = [[0,1,1,0],[0,1,1,0],[0,1,1,0],[0,1,1,0]] Output: -1 Explanation: All rows are similar, swaps have no effect on the grid.
Example 3:
Input: grid = [[1,0,0],[1,1,0],[1,1,1]] Output: 0
Constraints:
n == grid.length
== grid[i].length
1 <= n <= 200
grid[i][j]
is either0
or1
Solutions
Solution: Bubble Sort
- Time complexity: O(n2)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number[][]} grid
* @return {number}
*/
const minSwaps = function (grid) {
const n = grid.length;
const zeroSuffixCounts = grid.map(row => n - row.lastIndexOf(1) - 1);
let result = 0;
for (let row = 0; row < n; row++) {
const targetZeroSuffixCounts = n - row - 1;
let swapRow = row;
while (swapRow < n && zeroSuffixCounts[swapRow] < targetZeroSuffixCounts) swapRow += 1;
if (swapRow === n) return -1;
for (let currentRow = swapRow; currentRow > row; currentRow--) {
[zeroSuffixCounts[currentRow], zeroSuffixCounts[currentRow - 1]] = [
zeroSuffixCounts[currentRow - 1],
zeroSuffixCounts[currentRow],
];
result += 1;
}
}
return result;
};