834. Sum of Distances in Tree
Description
There is an undirected connected tree with n
nodes labeled from 0
to n - 1
and n - 1
edges.
You are given the integer n
and the array edges
where edges[i] = [ai, bi]
indicates that there is an edge between nodes ai
and bi
in the tree.
Return an array answer
of length n
where answer[i]
is the sum of the distances between the ith
node in the tree and all other nodes.
Example 1:
Input: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]] Output: [8,12,6,10,10,10] Explanation: The tree is shown above. We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5) equals 1 + 1 + 2 + 2 + 2 = 8. Hence, answer[0] = 8, and so on.
Example 2:
Input: n = 1, edges = [] Output: [0]
Example 3:
Input: n = 2, edges = [[1,0]] Output: [1,1]
Constraints:
1 <= n <= 3 * 104
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
- The given input represents a valid tree.
Solutions
Solution: Depth-First Search + Dynamic Programming
- Time complexity: O(n)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number} n
* @param {number[][]} edges
* @return {number[]}
*/
const sumOfDistancesInTree = function (n, edges) {
const graph = new Array(n)
.fill('')
.map(_ => []);
for (const [a, b] of edges) {
graph[a].push(b);
graph[b].push(a);
}
const counts = new Array(n).fill(1);
const result = new Array(n).fill(0);
const root = 0;
const dfsGraph = (node, parent) => {
for (const connectedNode of graph[node]) {
if (connectedNode === parent) continue;
dfsGraph(connectedNode, node);
counts[node] += counts[connectedNode];
result[node] += result[connectedNode] + counts[connectedNode];
}
};
dfsGraph(root, null);
const sumDistance = (node, parent) => {
for (const connectedNode of graph[node]) {
if (connectedNode === parent) continue;
result[connectedNode] = result[node] - counts[connectedNode] + n - counts[connectedNode];
sumDistance(connectedNode, node);
}
};
sumDistance(root, null);
return result;
};