Skip to content

1921. Eliminate Maximum Number of Monsters

Description

You are playing a video game where you are defending your city from a group of n monsters. You are given a 0-indexed integer array dist of size n, where dist[i] is the initial distance in kilometers of the ith monster from the city.

The monsters walk toward the city at a constant speed. The speed of each monster is given to you in an integer array speed of size n, where speed[i] is the speed of the ith monster in kilometers per minute.

You have a weapon that, once fully charged, can eliminate a single monster. However, the weapon takes one minute to charge. The weapon is fully charged at the very start.

You lose when any monster reaches your city. If a monster reaches the city at the exact moment the weapon is fully charged, it counts as a loss, and the game ends before you can use your weapon.

Return the maximum number of monsters that you can eliminate before you lose, or n if you can eliminate all the monsters before they reach the city.

 

Example 1:

Input: dist = [1,3,4], speed = [1,1,1]
Output: 3
Explanation:
In the beginning, the distances of the monsters are [1,3,4]. You eliminate the first monster.
After a minute, the distances of the monsters are [X,2,3]. You eliminate the second monster.
After a minute, the distances of the monsters are [X,X,2]. You eliminate the third monster.
All 3 monsters can be eliminated.

Example 2:

Input: dist = [1,1,2,3], speed = [1,1,1,1]
Output: 1
Explanation:
In the beginning, the distances of the monsters are [1,1,2,3]. You eliminate the first monster.
After a minute, the distances of the monsters are [X,0,1,2], so you lose.
You can only eliminate 1 monster.

Example 3:

Input: dist = [3,2,4], speed = [5,3,2]
Output: 1
Explanation:
In the beginning, the distances of the monsters are [3,2,4]. You eliminate the first monster.
After a minute, the distances of the monsters are [X,0,2], so you lose.
You can only eliminate 1 monster.

 

Constraints:

  • n == dist.length == speed.length
  • 1 <= n <= 105
  • 1 <= dist[i], speed[i] <= 105

 

Solutions

Solution: Greedy

  • Time complexity: O(nlogn)
  • Space complexity: O(n)

 

JavaScript

js
/**
 * @param {number[]} dist
 * @param {number[]} speed
 * @return {number}
 */
const eliminateMaximum = function (dist, speed) {
  const size = dist.length;
  const reachTimes = dist.map((distance, index) => Math.ceil(distance / speed[index]));

  reachTimes.sort((a, b) => a - b);

  for (let minute = 0; minute < size; minute++) {
    if (minute < reachTimes[minute]) continue;
    return minute;
  }
  return size;
};

Released under the MIT license