1921. Eliminate Maximum Number of Monsters
Description
You are playing a video game where you are defending your city from a group of n
monsters. You are given a 0-indexed integer array dist
of size n
, where dist[i]
is the initial distance in kilometers of the ith
monster from the city.
The monsters walk toward the city at a constant speed. The speed of each monster is given to you in an integer array speed
of size n
, where speed[i]
is the speed of the ith
monster in kilometers per minute.
You have a weapon that, once fully charged, can eliminate a single monster. However, the weapon takes one minute to charge. The weapon is fully charged at the very start.
You lose when any monster reaches your city. If a monster reaches the city at the exact moment the weapon is fully charged, it counts as a loss, and the game ends before you can use your weapon.
Return the maximum number of monsters that you can eliminate before you lose, or n
if you can eliminate all the monsters before they reach the city.
Example 1:
Input: dist = [1,3,4], speed = [1,1,1] Output: 3 Explanation: In the beginning, the distances of the monsters are [1,3,4]. You eliminate the first monster. After a minute, the distances of the monsters are [X,2,3]. You eliminate the second monster. After a minute, the distances of the monsters are [X,X,2]. You eliminate the third monster. All 3 monsters can be eliminated.
Example 2:
Input: dist = [1,1,2,3], speed = [1,1,1,1] Output: 1 Explanation: In the beginning, the distances of the monsters are [1,1,2,3]. You eliminate the first monster. After a minute, the distances of the monsters are [X,0,1,2], so you lose. You can only eliminate 1 monster.
Example 3:
Input: dist = [3,2,4], speed = [5,3,2] Output: 1 Explanation: In the beginning, the distances of the monsters are [3,2,4]. You eliminate the first monster. After a minute, the distances of the monsters are [X,0,2], so you lose. You can only eliminate 1 monster.
Constraints:
n == dist.length == speed.length
1 <= n <= 105
1 <= dist[i], speed[i] <= 105
Solutions
Solution: Greedy
- Time complexity: O(nlogn)
- Space complexity: O(n)
JavaScript
/**
* @param {number[]} dist
* @param {number[]} speed
* @return {number}
*/
const eliminateMaximum = function (dist, speed) {
const size = dist.length;
const reachTimes = dist.map((distance, index) => Math.ceil(distance / speed[index]));
reachTimes.sort((a, b) => a - b);
for (let minute = 0; minute < size; minute++) {
if (minute < reachTimes[minute]) continue;
return minute;
}
return size;
};