1658. Minimum Operations to Reduce X to Zero
Description
You are given an integer array nums
and an integer x
. In one operation, you can either remove the leftmost or the rightmost element from the array nums
and subtract its value from x
. Note that this modifies the array for future operations.
Return the minimum number of operations to reduce x
to exactly 0
if it is possible, otherwise, return -1
.
Example 1:
Input: nums = [1,1,4,2,3], x = 5 Output: 2 Explanation: The optimal solution is to remove the last two elements to reduce x to zero.
Example 2:
Input: nums = [5,6,7,8,9], x = 4 Output: -1
Example 3:
Input: nums = [3,2,20,1,1,3], x = 10 Output: 5 Explanation: The optimal solution is to remove the last three elements and the first two elements (5 operations in total) to reduce x to zero.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 104
1 <= x <= 109
Solutions
Solution: Prefix Sum
- Time complexity: O(n)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number[]} nums
* @param {number} x
* @return {number}
*/
const minOperations = function (nums, x) {
const sum = nums.reduce((result, num) => result + num);
const size = nums.length;
if (sum === x) return size;
const prefixSumMap = new Map([[0, -1]]);
const target = sum - x;
let currentSum = 0;
let result = -1;
for (let index = 0; index < size; index++) {
currentSum += nums[index];
prefixSumMap.set(currentSum, index);
if (prefixSumMap.has(currentSum - target)) {
const position = prefixSumMap.get(currentSum - target);
result = Math.max(result, index - position);
}
}
return result > -1 ? size - result : -1;
};