Skip to content

1753. Maximum Score From Removing Stones

Description

You are playing a solitaire game with three piles of stones of sizes a​​​​​​, b,​​​​​​ and c​​​​​​ respectively. Each turn you choose two different non-empty piles, take one stone from each, and add 1 point to your score. The game stops when there are fewer than two non-empty piles (meaning there are no more available moves).

Given three integers a​​​​​, b,​​​​​ and c​​​​​, return the maximumscore you can get.

 

Example 1:

Input: a = 2, b = 4, c = 6
Output: 6
Explanation: The starting state is (2, 4, 6). One optimal set of moves is:
- Take from 1st and 3rd piles, state is now (1, 4, 5)
- Take from 1st and 3rd piles, state is now (0, 4, 4)
- Take from 2nd and 3rd piles, state is now (0, 3, 3)
- Take from 2nd and 3rd piles, state is now (0, 2, 2)
- Take from 2nd and 3rd piles, state is now (0, 1, 1)
- Take from 2nd and 3rd piles, state is now (0, 0, 0)
There are fewer than two non-empty piles, so the game ends. Total: 6 points.

Example 2:

Input: a = 4, b = 4, c = 6
Output: 7
Explanation: The starting state is (4, 4, 6). One optimal set of moves is:
- Take from 1st and 2nd piles, state is now (3, 3, 6)
- Take from 1st and 3rd piles, state is now (2, 3, 5)
- Take from 1st and 3rd piles, state is now (1, 3, 4)
- Take from 1st and 3rd piles, state is now (0, 3, 3)
- Take from 2nd and 3rd piles, state is now (0, 2, 2)
- Take from 2nd and 3rd piles, state is now (0, 1, 1)
- Take from 2nd and 3rd piles, state is now (0, 0, 0)
There are fewer than two non-empty piles, so the game ends. Total: 7 points.

Example 3:

Input: a = 1, b = 8, c = 8
Output: 8
Explanation: One optimal set of moves is to take from the 2nd and 3rd piles for 8 turns until they are empty.
After that, there are fewer than two non-empty piles, so the game ends.

 

Constraints:

  • 1 <= a, b, c <= 105

 

Solutions

Solution: Recursive

  • Time complexity: O(n)
  • Space complexity: O(n)

 

JavaScript

js
/**
 * @param {number} a
 * @param {number} b
 * @param {number} c
 * @return {number}
 */
const maximumScore = function (a, b, c) {
  if ((!a && !b) || (!b && !c) || (!a && !c)) return 0;
  if (a <= b && a <= c) return 1 + maximumScore(a, b - 1, c - 1);
  if (b <= a && b <= c) return 1 + maximumScore(a - 1, b, c - 1);
  if (c <= a && c <= b) return 1 + maximumScore(a - 1, b - 1, c);
};

Released under the MIT license