Skip to content

1172. Dinner Plate Stacks

Description

You have an infinite number of stacks arranged in a row and numbered (left to right) from 0, each of the stacks has the same maximum capacity.

Implement the DinnerPlates class:

  • DinnerPlates(int capacity) Initializes the object with the maximum capacity of the stacks capacity.
  • void push(int val) Pushes the given integer val into the leftmost stack with a size less than capacity.
  • int pop() Returns the value at the top of the rightmost non-empty stack and removes it from that stack, and returns -1 if all the stacks are empty.
  • int popAtStack(int index) Returns the value at the top of the stack with the given index index and removes it from that stack or returns -1 if the stack with that given index is empty.

 

Example 1:

Input
["DinnerPlates", "push", "push", "push", "push", "push", "popAtStack", "push", "push", "popAtStack", "popAtStack", "pop", "pop", "pop", "pop", "pop"]
[[2], [1], [2], [3], [4], [5], [0], [20], [21], [0], [2], [], [], [], [], []]
Output
[null, null, null, null, null, null, 2, null, null, 20, 21, 5, 4, 3, 1, -1]

Explanation: 
DinnerPlates D = DinnerPlates(2);  // Initialize with capacity = 2
D.push(1);
D.push(2);
D.push(3);
D.push(4);
D.push(5);         // The stacks are now:  2  4
                                           1  3  5
                                           ﹈ ﹈ ﹈
D.popAtStack(0);   // Returns 2.  The stacks are now:     4
                                                       1  3  5
                                                       ﹈ ﹈ ﹈
D.push(20);        // The stacks are now: 20  4
                                           1  3  5
                                           ﹈ ﹈ ﹈
D.push(21);        // The stacks are now: 20  4 21
                                           1  3  5
                                           ﹈ ﹈ ﹈
D.popAtStack(0);   // Returns 20.  The stacks are now:     4 21
                                                        1  3  5
                                                        ﹈ ﹈ ﹈
D.popAtStack(2);   // Returns 21.  The stacks are now:     4
                                                        1  3  5
                                                        ﹈ ﹈ ﹈ 
D.pop()            // Returns 5.  The stacks are now:      4
                                                        1  3 
                                                        ﹈ ﹈  
D.pop()            // Returns 4.  The stacks are now:   1  3 
                                                        ﹈ ﹈   
D.pop()            // Returns 3.  The stacks are now:   1 
                                                        ﹈   
D.pop()            // Returns 1.  There are no stacks.
D.pop()            // Returns -1.  There are still no stacks.

 

Constraints:

  • 1 <= capacity <= 2 * 104
  • 1 <= val <= 2 * 104
  • 0 <= index <= 105
  • At most 2 * 105 calls will be made to push, pop, and popAtStack.

 

Solutions

Solution: Priority Queue

  • Time complexity: O(logn)
  • Space complexity: O(push calls)

 

JavaScript

js
/**
 * @param {number} capacity
 */
const DinnerPlates = function (capacity) {
  this.platesStacks = [];
  this.capacity = capacity;
  this.stackQueue = new MaxPriorityQueue();
  this.notFullQueue = new MinPriorityQueue();
  this.emptyStackMemo = new Set();
};

/**
 * @param {number} val
 * @return {void}
 */
DinnerPlates.prototype.push = function (val) {
  if (this.notFullQueue.isEmpty()) {
    this.notFullQueue.enqueue(this.platesStacks.length);
  }
  const index = this.notFullQueue.front().element;

  if (!this.platesStacks[index]) {
    this.platesStacks[index] = [];
  }
  const stack = this.platesStacks[index];

  if (!stack.length) {
    this.stackQueue.enqueue(index);
  }
  stack.push(val);
  if (stack.length !== this.capacity) return;

  this.notFullQueue.dequeue();
};

/**
 * @return {number}
 */
DinnerPlates.prototype.pop = function () {
  if (this.stackQueue.isEmpty()) return -1;

  let index = this.stackQueue.front().element;

  if (this.emptyStackMemo.has(index)) {
    this.stackQueue.dequeue();
    this.emptyStackMemo.delete(index);
    if (this.stackQueue.isEmpty()) return -1;

    index = this.stackQueue.front().element;
  }
  const stack = this.platesStacks[index];

  if (stack.length === this.capacity) {
    this.notFullQueue.enqueue(index);
  }
  const value = stack.pop();

  if (stack.length) return value;

  this.stackQueue.dequeue();
  return value;
};

/**
 * @param {number} index
 * @return {number}
 */
DinnerPlates.prototype.popAtStack = function (index) {
  const stack = this.platesStacks[index];

  if (!stack?.length) return -1;
  if (stack.length === this.capacity) {
    this.notFullQueue.enqueue(index);
  }
  const value = stack.pop();

  if (stack.length) return value;

  this.emptyStackMemo.add(index);
  return value;
};

/**
 * Your DinnerPlates object will be instantiated and called as such:
 * var obj = new DinnerPlates(capacity)
 * obj.push(val)
 * var param_2 = obj.pop()
 * var param_3 = obj.popAtStack(index)
 */

Released under the MIT license