1545. Find Kth Bit in Nth Binary String
Description
Given two positive integers n
and k
, the binary string Sn
is formed as follows:
S1 = "0"
Si = Si - 1 + "1" + reverse(invert(Si - 1))
fori > 1
Where +
denotes the concatenation operation, reverse(x)
returns the reversed string x
, and invert(x)
inverts all the bits in x
(0
changes to 1
and 1
changes to 0
).
For example, the first four strings in the above sequence are:
S1 = "0"
S2 = "011"
S3 = "0111001"
S4 = "011100110110001"
Return the kth
bit in Sn
. It is guaranteed that k
is valid for the given n
.
Example 1:
Input: n = 3, k = 1 Output: "0" Explanation: S3 is "0111001". The 1st bit is "0".
Example 2:
Input: n = 4, k = 11 Output: "1" Explanation: S4 is "011100110110001". The 11th bit is "1".
Constraints:
1 <= n <= 20
1 <= k <= 2n - 1
Solutions
Solution: Recursion
- Time complexity: O(n)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number} n
* @param {number} k
* @return {character}
*/
const findKthBit = function (n, k) {
if (n === 1) return '0';
const size = 2 ** n - 1;
const mid = (size + 1) / 2;
if (mid === k) return '1';
if (mid < k) {
return findKthBit(n - 1, size - k + 1) === '0' ? '1' : '0';
}
return findKthBit(n - 1, k);
};