757. Set Intersection Size At Least Two
Description
You are given a 2D integer array intervals
where intervals[i] = [starti, endi]
represents all the integers from starti
to endi
inclusively.
A containing set is an array nums
where each interval from intervals
has at least two integers in nums
.
- For example, if
intervals = [[1,3], [3,7], [8,9]]
, then[1,2,4,7,8,9]
and[2,3,4,8,9]
are containing sets.
Return the minimum possible size of a containing set.
Example 1:
Input: intervals = [[1,3],[3,7],[8,9]] Output: 5 Explanation: let nums = [2, 3, 4, 8, 9]. It can be shown that there cannot be any containing array of size 4.
Example 2:
Input: intervals = [[1,3],[1,4],[2,5],[3,5]] Output: 3 Explanation: let nums = [2, 3, 4]. It can be shown that there cannot be any containing array of size 2.
Example 3:
Input: intervals = [[1,2],[2,3],[2,4],[4,5]] Output: 5 Explanation: let nums = [1, 2, 3, 4, 5]. It can be shown that there cannot be any containing array of size 4.
Constraints:
1 <= intervals.length <= 3000
intervals[i].length == 2
0 <= starti < endi <= 108
Solutions
Solution: Greedy
- Time complexity: O(nlogn)
- Space complexity: O(1)
JavaScript
js
/**
* @param {number[][]} intervals
* @return {number}
*/
const intersectionSizeTwo = function (intervals) {
let last1 = (last2 = -1);
let result = 0;
intervals.sort((a, b) => a[1] - b[1] || b[0] - a[0]);
for (const [start, end] of intervals) {
if (start <= last1) continue;
if (start > last2) {
last1 = end - 1;
last2 = end;
result += 2;
continue;
}
last1 = last2;
last2 = end;
result += 1;
}
return result;
};