1605. Find Valid Matrix Given Row and Column Sums
Description
You are given two arrays rowSum
and colSum
of non-negative integers where rowSum[i]
is the sum of the elements in the ith
row and colSum[j]
is the sum of the elements of the jth
column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.
Find any matrix of non-negative integers of size rowSum.length x colSum.length
that satisfies the rowSum
and colSum
requirements.
Return a 2D array representing any matrix that fulfills the requirements. It's guaranteed that at least one matrix that fulfills the requirements exists.
Example 1:
Input: rowSum = [3,8], colSum = [4,7] Output: [[3,0], [1,7]] Explanation: 0th row: 3 + 0 = 3 == rowSum[0] 1st row: 1 + 7 = 8 == rowSum[1] 0th column: 3 + 1 = 4 == colSum[0] 1st column: 0 + 7 = 7 == colSum[1] The row and column sums match, and all matrix elements are non-negative. Another possible matrix is: [[1,2], [3,5]]
Example 2:
Input: rowSum = [5,7,10], colSum = [8,6,8] Output: [[0,5,0], [6,1,0], [2,0,8]]
Constraints:
1 <= rowSum.length, colSum.length <= 500
0 <= rowSum[i], colSum[i] <= 108
sum(rowSum) == sum(colSum)
Solutions
Solution: Greedy
- Time complexity: O(mn)
- Space complexity: O(mn)
JavaScript
js
/**
* @param {number[]} rowSum
* @param {number[]} colSum
* @return {number[][]}
*/
const restoreMatrix = function (rowSum, colSum) {
const m = rowSum.length;
const n = colSum.length;
const result = new Array(m)
.fill('')
.map(_ => new Array(n));
for (let row = 0; row < m; row++) {
for (let col = 0; col < n; col++) {
const value = Math.min(rowSum[row], colSum[col]);
result[row][col] = value;
rowSum[row] -= value;
colSum[col] -= value;
}
}
return result;
};