1825. Finding MK Average
Description
You are given two integers, m
and k
, and a stream of integers. You are tasked to implement a data structure that calculates the MKAverage for the stream.
The MKAverage can be calculated using these steps:
- If the number of the elements in the stream is less than
m
you should consider the MKAverage to be-1
. Otherwise, copy the lastm
elements of the stream to a separate container. - Remove the smallest
k
elements and the largestk
elements from the container. - Calculate the average value for the rest of the elements rounded down to the nearest integer.
Implement the MKAverage
class:
MKAverage(int m, int k)
Initializes the MKAverage object with an empty stream and the two integersm
andk
.void addElement(int num)
Inserts a new elementnum
into the stream.int calculateMKAverage()
Calculates and returns the MKAverage for the current stream rounded down to the nearest integer.
Example 1:
Input
["MKAverage", "addElement", "addElement", "calculateMKAverage", "addElement", "calculateMKAverage", "addElement", "addElement", "addElement", "calculateMKAverage"]
[[3, 1], [3], [1], [], [10], [], [5], [5], [5], []]
Output
[null, null, null, -1, null, 3, null, null, null, 5]
Explanation
MKAverage obj = new MKAverage(3, 1);
obj.addElement(3); // current elements are [3]
obj.addElement(1); // current elements are [3,1]
obj.calculateMKAverage(); // return -1, because m = 3 and only 2 elements exist.
obj.addElement(10); // current elements are [3,1,10]
obj.calculateMKAverage(); // The last 3 elements are [3,1,10].
// After removing smallest and largest 1 element the container will be [3].
// The average of [3] equals 3/1 = 3, return 3
obj.addElement(5); // current elements are [3,1,10,5]
obj.addElement(5); // current elements are [3,1,10,5,5]
obj.addElement(5); // current elements are [3,1,10,5,5,5]
obj.calculateMKAverage(); // The last 3 elements are [5,5,5].
// After removing smallest and largest 1 element the container will be [5].
// The average of [5] equals 5/1 = 5, return 5
Constraints:
3 <= m <= 105
1 < k*2 < m
1 <= num <= 105
- At most
105
calls will be made toaddElement
andcalculateMKAverage
.
Solutions
Solution: Binary Search
- Time complexity: O(nlogn)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number} m
* @param {number} k
*/
const MKAverage = function (m, k) {
this.m = m;
this.k = k;
this.queue = [];
this.low = [];
this.mid = [];
this.high = [];
this.midSum = 0;
};
/**
* @param {number} num
* @return {void}
*/
MKAverage.prototype.addElement = function (num) {
this.queue.push(num);
if (this.queue.length < this.m) {
insert(this.mid, num);
this.midSum += num;
return;
}
if (this.queue.length === this.m) {
insert(this.mid, num);
this.midSum += num;
while (this.low.length < this.k) {
const smallestMid = this.mid.shift();
this.midSum -= smallestMid;
insert(this.low, smallestMid);
}
while (this.high.length < this.k) {
const largestMid = this.mid.pop();
this.midSum -= largestMid;
insert(this.high, largestMid);
}
return;
}
this.removeOldValue();
if (this.low.length && num <= this.low.at(-1)) {
insert(this.low, num);
const largestLow = this.low.pop();
insert(this.mid, largestLow);
this.midSum += largestLow;
} else if (this.high.length && num >= this.high[0]) {
insert(this.high, num);
const smallestHigh = this.high.shift();
insert(this.mid, smallestHigh);
this.midSum += smallestHigh;
} else {
insert(this.mid, num);
this.midSum += num;
}
while (this.low.length < this.k) {
const smallestMid = this.mid.shift();
this.midSum -= smallestMid;
insert(this.low, smallestMid);
}
while (this.low.length > this.k) {
const largestLow = this.low.pop();
insert(this.mid, largestLow);
this.midSum += largestLow;
}
while (this.high.length < this.k) {
const largestMid = this.mid.pop();
this.midSum -= largestMid;
insert(this.high, largestMid);
}
while (this.high.length > this.k) {
const smallestHigh = this.high.shift();
insert(this.mid, smallestHigh);
this.midSum += smallestHigh;
}
};
/**
* @return {number}
*/
MKAverage.prototype.calculateMKAverage = function () {
if (this.queue.length < this.m) return -1;
return Math.floor(this.midSum / (this.m - 2 * this.k));
};
MKAverage.prototype.removeOldValue = function () {
const old = this.queue.shift();
if (remove(this.low, old)) return;
if (remove(this.high, old)) return;
if (remove(this.mid, old)) {
this.midSum -= old;
}
};
function insert(arr, val) {
let left = 0,
right = arr.length;
while (left < right) {
const mid = Math.floor((left + right) / 2);
if (arr[mid] < val) left = mid + 1;
else right = mid;
}
arr.splice(left, 0, val);
}
function remove(arr, val) {
let left = 0,
right = arr.length - 1;
while (left <= right) {
const mid = Math.floor((left + right) / 2);
if (arr[mid] === val) {
arr.splice(mid, 1);
return true;
} else if (arr[mid] < val) left = mid + 1;
else right = mid - 1;
}
return false;
}
/**
* Your MKAverage object will be instantiated and called as such:
* var obj = new MKAverage(m, k)
* obj.addElement(num)
* var param_2 = obj.calculateMKAverage()
*/