2334. Subarray With Elements Greater Than Varying Threshold
Description
You are given an integer array nums and an integer threshold.
Find any subarray of nums of length k such that every element in the subarray is greater than threshold / k.
Return the size of any such subarray. If there is no such subarray, return -1.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,3,4,3,1], threshold = 6 Output: 3 Explanation: The subarray [3,4,3] has a size of 3, and every element is greater than 6 / 3 = 2. Note that this is the only valid subarray.
Example 2:
Input: nums = [6,5,6,5,8], threshold = 7 Output: 1 Explanation: The subarray [8] has a size of 1, and 8 > 7 / 1 = 7. So 1 is returned. Note that the subarray [6,5] has a size of 2, and every element is greater than 7 / 2 = 3.5. Similarly, the subarrays [6,5,6], [6,5,6,5], [6,5,6,5,8] also satisfy the given conditions. Therefore, 2, 3, 4, or 5 may also be returned.
Constraints:
1 <= nums.length <= 1051 <= nums[i], threshold <= 109
Solutions
Solution: Stack
- Time complexity: O(n)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number[]} nums
* @param {number} threshold
* @return {number}
*/
const validSubarraySize = function (nums, threshold) {
const n = nums.length;
const stack = [];
const prev = Array.from({ length: n }, () => -1);
const next = Array.from({ length: n }, () => n);
for (let index = 0; index < n; index++) {
const num = nums[index];
while (stack.length && nums[stack.at(-1)] > num) {
const pos = stack.pop();
next[pos] = index;
}
if (stack.length) {
prev[index] = stack.at(-1);
}
stack.push(index);
}
for (let index = 0; index < n; index++) {
const k = index - prev[index] + (next[index] - index) - 1;
if (nums[index] > threshold / k) return k;
}
return -1;
};