312. Burst Balloons
Description
You are given n
balloons, indexed from 0
to n - 1
. Each balloon is painted with a number on it represented by an array nums
. You are asked to burst all the balloons.
If you burst the ith
balloon, you will get nums[i - 1] * nums[i] * nums[i + 1]
coins. If i - 1
or i + 1
goes out of bounds of the array, then treat it as if there is a balloon with a 1
painted on it.
Return the maximum coins you can collect by bursting the balloons wisely.
Example 1:
Input: nums = [3,1,5,8] Output: 167 Explanation: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
Example 2:
Input: nums = [1,5] Output: 10
Constraints:
n == nums.length
1 <= n <= 300
0 <= nums[i] <= 100
Solutions
Solution: Dynamic Programming
- Time complexity: O(n3)
- Space complexity: O(n2)
JavaScript
js
/**
* @param {number[]} nums
* @return {number}
*/
const maxCoins = function (nums) {
const n = nums.length;
const coins = [1, ...nums, 1];
const dp = new Array(n + 2)
.fill('')
.map(_ => new Array(n + 2).fill(0));
for (let left = n; left >= 1; left--) {
for (let right = left; right <= n; right++) {
let max = 0;
for (let index = left; index <= right; index++) {
const current = coins[left - 1] * coins[index] * coins[right + 1];
max = Math.max(max, current + dp[left][index - 1] + dp[index + 1][right]);
}
dp[left][right] = max;
}
}
return dp[1][n];
};