1806. Minimum Number of Operations to Reinitialize a Permutation
Description
You are given an even integer n
. You initially have a permutation perm
of size n
where perm[i] == i
(0-indexed).
In one operation, you will create a new array arr
, and for each i
:
- If
i % 2 == 0
, thenarr[i] = perm[i / 2]
. - If
i % 2 == 1
, thenarr[i] = perm[n / 2 + (i - 1) / 2]
.
You will then assign arr
to perm
.
Return the minimum non-zero number of operations you need to perform on perm
to return the permutation to its initial value.
Example 1:
Input: n = 2 Output: 1 Explanation: perm = [0,1] initially. After the 1st operation, perm = [0,1] So it takes only 1 operation.
Example 2:
Input: n = 4 Output: 2 Explanation: perm = [0,1,2,3] initially. After the 1st operation, perm = [0,2,1,3] After the 2nd operation, perm = [0,1,2,3] So it takes only 2 operations.
Example 3:
Input: n = 6 Output: 4
Constraints:
2 <= n <= 1000
n
is even.
Solutions
Solution: simulation
- Time complexity: O(n)
- Space complexity: O(1)
JavaScript
js
/**
* @param {number} n
* @return {number}
*/
const reinitializePermutation = function (n) {
const BASE_INDEX = 1;
let result = 1;
let index = n / 2 + (BASE_INDEX - 1) / 2;
while (index !== BASE_INDEX) {
index = index % 2 ? n / 2 + (index - 1) / 2 : index / 2;
result += 1;
}
return result;
};