1793. Maximum Score of a Good Subarray
Description
You are given an array of integers nums
(0-indexed) and an integer k
.
The score of a subarray (i, j)
is defined as min(nums[i], nums[i+1], ..., nums[j]) * (j - i + 1)
. A good subarray is a subarray where i <= k <= j
.
Return the maximum possible score of a good subarray.
Example 1:
Input: nums = [1,4,3,7,4,5], k = 3 Output: 15 Explanation: The optimal subarray is (1, 5) with a score of min(4,3,7,4,5) * (5-1+1) = 3 * 5 = 15.
Example 2:
Input: nums = [5,5,4,5,4,1,1,1], k = 0 Output: 20 Explanation: The optimal subarray is (0, 4) with a score of min(5,5,4,5,4) * (4-0+1) = 4 * 5 = 20.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 2 * 104
0 <= k < nums.length
Solutions
Solution: Two Pointers
- Time complexity: O(n)
- Space complexity: O(1)
JavaScript
js
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
const maximumScore = function (nums, k) {
const n = nums.length;
let left = k;
let right = k;
let minNum = nums[k];
let result = nums[k];
while (left > 0 || right < n - 1) {
left === 0 || nums[right + 1] > nums[left - 1] ? (right += 1) : (left -= 1);
minNum = Math.min(nums[left], nums[right], minNum);
const score = (right - left + 1) * minNum;
result = Math.max(score, result);
}
return result;
};