Skip to content

1726. Tuple with Same Product

Description

Given an array nums of distinct positive integers, return the number of tuples (a, b, c, d) such that a * b = c * d where a, b, c, and d are elements of nums, and a != b != c != d.

 

Example 1:

Input: nums = [2,3,4,6]
Output: 8
Explanation: There are 8 valid tuples:
(2,6,3,4) , (2,6,4,3) , (6,2,3,4) , (6,2,4,3)
(3,4,2,6) , (4,3,2,6) , (3,4,6,2) , (4,3,6,2)

Example 2:

Input: nums = [1,2,4,5,10]
Output: 16
Explanation: There are 16 valid tuples:
(1,10,2,5) , (1,10,5,2) , (10,1,2,5) , (10,1,5,2)
(2,5,1,10) , (2,5,10,1) , (5,2,1,10) , (5,2,10,1)
(2,10,4,5) , (2,10,5,4) , (10,2,4,5) , (10,2,5,4)
(4,5,2,10) , (4,5,10,2) , (5,4,2,10) , (5,4,10,2)

 

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 104
  • All elements in nums are distinct.

 

Solutions

Solution: Hash Map

  • Time complexity: O(n2)
  • Space complexity: O(n2)

 

JavaScript

js
/**
 * @param {number[]} nums
 * @return {number}
 */
const tupleSameProduct = function (nums) {
  const productMap = new Map();
  let result = 0;

  for (let a = 1; a < nums.length; a++) {
    for (let b = 0; b < a; b++) {
      const product = nums[a] * nums[b];
      const count = productMap.get(product) ?? 0;

      result += 8 * count;
      productMap.set(product, count + 1);
    }
  }
  return result;
};

Released under the MIT license