1749. Maximum Absolute Sum of Any Subarray
Description
You are given an integer array nums
. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr]
is abs(numsl + numsl+1 + ... + numsr-1 + numsr)
.
Return the maximum absolute sum of any (possibly empty) subarray of nums
.
Note that abs(x)
is defined as follows:
- If
x
is a negative integer, thenabs(x) = -x
. - If
x
is a non-negative integer, thenabs(x) = x
.
Example 1:
Input: nums = [1,-3,2,3,-4] Output: 5 Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
Example 2:
Input: nums = [2,-5,1,-4,3,-2] Output: 8 Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
Solutions
Solution: Dynamic Programming
- Time complexity: O(n)
- Space complexity: O(1)
JavaScript
js
/**
* @param {number[]} nums
* @return {number}
*/
const maxAbsoluteSum = function (nums) {
let maxSum = Number.MIN_SAFE_INTEGER;
let minSum = Number.MAX_SAFE_INTEGER;
let result = 0;
for (const num of nums) {
maxSum = Math.max(maxSum + num, num);
minSum = Math.min(minSum + num, num);
result = Math.max(result, maxSum, Math.abs(minSum));
}
return result;
};