Skip to content

1123. Lowest Common Ancestor of Deepest Leaves

Description

Given the root of a binary tree, return the lowest common ancestor of its deepest leaves.

Recall that:

  • The node of a binary tree is a leaf if and only if it has no children
  • The depth of the root of the tree is 0. if the depth of a node is d, the depth of each of its children is d + 1.
  • The lowest common ancestor of a set S of nodes, is the node A with the largest depth such that every node in S is in the subtree with root A.

 

Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4]
Output: [2,7,4]
Explanation: We return the node with value 2, colored in yellow in the diagram.
The nodes coloured in blue are the deepest leaf-nodes of the tree.
Note that nodes 6, 0, and 8 are also leaf nodes, but the depth of them is 2, but the depth of nodes 7 and 4 is 3.

Example 2:

Input: root = [1]
Output: [1]
Explanation: The root is the deepest node in the tree, and it's the lca of itself.

Example 3:

Input: root = [0,1,3,null,2]
Output: [2]
Explanation: The deepest leaf node in the tree is 2, the lca of one node is itself.

 

Constraints:

  • The number of nodes in the tree will be in the range [1, 1000].
  • 0 <= Node.val <= 1000
  • The values of the nodes in the tree are unique.

 

Note: This question is the same as 865: https://leetcode.com/problems/smallest-subtree-with-all-the-deepest-nodes/

 

Solutions

Solution: Depth-First Search

  • Time complexity: O(n)
  • Space complexity: O(h)

 

JavaScript

js
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {TreeNode}
 */
const lcaDeepestLeaves = function (root) {
  const findDeepestAncestor = node => {
    if (!node) return { node: null, deep: 0 };
    const left = findDeepestAncestor(node.left);
    const right = findDeepestAncestor(node.right);

    if (left.deep > right.deep) return { node: left.node, deep: left.deep + 1 };
    if (left.deep < right.deep) return { node: right.node, deep: right.deep + 1 };

    return { node, deep: left.deep + 1 };
  };

  return findDeepestAncestor(root).node;
};

Released under the MIT license