1642. Furthest Building You Can Reach
Description
You are given an integer array heights
representing the heights of buildings, some bricks
, and some ladders
.
You start your journey from building 0
and move to the next building by possibly using bricks or ladders.
While moving from building i
to building i+1
(0-indexed),
- If the current building's height is greater than or equal to the next building's height, you do not need a ladder or bricks.
- If the current building's height is less than the next building's height, you can either use one ladder or
(h[i+1] - h[i])
bricks.
Return the furthest building index (0-indexed) you can reach if you use the given ladders and bricks optimally.
Example 1:
Input: heights = [4,2,7,6,9,14,12], bricks = 5, ladders = 1 Output: 4 Explanation: Starting at building 0, you can follow these steps: - Go to building 1 without using ladders nor bricks since 4 >= 2. - Go to building 2 using 5 bricks. You must use either bricks or ladders because 2 < 7. - Go to building 3 without using ladders nor bricks since 7 >= 6. - Go to building 4 using your only ladder. You must use either bricks or ladders because 6 < 9. It is impossible to go beyond building 4 because you do not have any more bricks or ladders.
Example 2:
Input: heights = [4,12,2,7,3,18,20,3,19], bricks = 10, ladders = 2 Output: 7
Example 3:
Input: heights = [14,3,19,3], bricks = 17, ladders = 0 Output: 3
Constraints:
1 <= heights.length <= 105
1 <= heights[i] <= 106
0 <= bricks <= 109
0 <= ladders <= heights.length
Solutions
Solution: Greedy + Binary Search
- Time complexity: O(nlogn)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number[]} heights
* @param {number} bricks
* @param {number} ladders
* @return {number}
*/
const furthestBuilding = function (heights, bricks, ladders) {
const diffs = heights.map((height, index) => {
return Math.max((heights[index + 1] ?? 0) - height, 0);
});
let left = ladders;
let right = heights.length - 1;
while (left <= right) {
const mid = Math.floor((left + right) / 2);
const current = diffs.slice(0, mid);
current.sort((a, b) => b - a);
const sumDiff = current.slice(ladders).reduce((sum, diff) => sum + diff, 0);
sumDiff > bricks ? (right = mid - 1) : (left = mid + 1);
}
return right;
};