Skip to content

2530. Maximal Score After Applying K Operations

Description

You are given a 0-indexed integer array nums and an integer k. You have a starting score of 0.

In one operation:

  1. choose an index i such that 0 <= i < nums.length,
  2. increase your score by nums[i], and
  3. replace nums[i] with ceil(nums[i] / 3).

Return the maximum possible score you can attain after applying exactly k operations.

The ceiling function ceil(val) is the least integer greater than or equal to val.

 

Example 1:

Input: nums = [10,10,10,10,10], k = 5
Output: 50
Explanation: Apply the operation to each array element exactly once. The final score is 10 + 10 + 10 + 10 + 10 = 50.

Example 2:

Input: nums = [1,10,3,3,3], k = 3
Output: 17
Explanation: You can do the following operations:
Operation 1: Select i = 1, so nums becomes [1,4,3,3,3]. Your score increases by 10.
Operation 2: Select i = 1, so nums becomes [1,2,3,3,3]. Your score increases by 4.
Operation 3: Select i = 2, so nums becomes [1,1,1,3,3]. Your score increases by 3.
The final score is 10 + 4 + 3 = 17.

 

Constraints:

  • 1 <= nums.length, k <= 105
  • 1 <= nums[i] <= 109

 

Solutions

Solution: Priority Queue

  • Time complexity: O(klogn)
  • Space complexity: O(n)

 

JavaScript

js
/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number}
 */
const maxKelements = function (nums, k) {
  const queue = new MaxPriorityQueue({ compare: (a, b) => b - a });
  let result = 0;

  for (const num of nums) {
    queue.enqueue(num);
  }

  while (k) {
    const num = queue.dequeue();

    result += num;
    k -= 1;
    queue.enqueue(Math.ceil(num / 3));
  }
  return result;
};

Released under the MIT license