1685. Sum of Absolute Differences in a Sorted Array
Description
You are given an integer array nums
sorted in non-decreasing order.
Build and return an integer array result
with the same length as nums
such that result[i]
is equal to the summation of absolute differences between nums[i]
and all the other elements in the array.
In other words, result[i]
is equal to sum(|nums[i]-nums[j]|)
where 0 <= j < nums.length
and j != i
(0-indexed).
Example 1:
Input: nums = [2,3,5] Output: [4,3,5] Explanation: Assuming the arrays are 0-indexed, then result[0] = |2-2| + |2-3| + |2-5| = 0 + 1 + 3 = 4, result[1] = |3-2| + |3-3| + |3-5| = 1 + 0 + 2 = 3, result[2] = |5-2| + |5-3| + |5-5| = 3 + 2 + 0 = 5.
Example 2:
Input: nums = [1,4,6,8,10] Output: [24,15,13,15,21]
Constraints:
2 <= nums.length <= 105
1 <= nums[i] <= nums[i + 1] <= 104
Solutions
Solution: Prefix Sum
- Time complexity: O(n)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number[]} nums
* @return {number[]}
*/
const getSumAbsoluteDifferences = function (nums) {
const prefixSum = [nums[0]];
const size = nums.length;
for (let index = 1; index < size; index++) {
prefixSum[index] = prefixSum[index - 1] + nums[index];
}
const sum = prefixSum.at(-1);
return nums.map((num, index) => {
const currentSum = prefixSum[index];
const left = num * (index + 1) - currentSum;
const right = sum - currentSum - num * (size - index - 1);
return left + right;
});
};