1072. Flip Columns For Maximum Number of Equal Rows
Description
You are given an m x n
binary matrix matrix
.
You can choose any number of columns in the matrix and flip every cell in that column (i.e., Change the value of the cell from 0
to 1
or vice versa).
Return the maximum number of rows that have all values equal after some number of flips.
Example 1:
Input: matrix = [[0,1],[1,1]] Output: 1 Explanation: After flipping no values, 1 row has all values equal.
Example 2:
Input: matrix = [[0,1],[1,0]] Output: 2 Explanation: After flipping values in the first column, both rows have equal values.
Example 3:
Input: matrix = [[0,0,0],[0,0,1],[1,1,0]] Output: 2 Explanation: After flipping values in the first two columns, the last two rows have equal values.
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j]
is either0
or1
.
Solutions
Solution: Hash Map
- Time complexity: O(mn)
- Space complexity: O(m)
JavaScript
js
/**
* @param {number[][]} matrix
* @return {number}
*/
const maxEqualRowsAfterFlips = function (matrix) {
const m = matrix.length;
const n = matrix[0].length;
const rowMap = new Map();
let result = 0;
for (let row = 0; row < m; row++) {
const isFlip = matrix[row][0];
let current = '';
for (let col = 0; col < n; col++) {
const value = matrix[row][col];
const flipValue = isFlip ? value ^ 1 : value;
current += `${flipValue}`;
}
const sameRowCount = rowMap.get(current) ?? 0;
rowMap.set(current, sameRowCount + 1);
result = Math.max(sameRowCount + 1, result);
}
return result;
};