2176. Count Equal and Divisible Pairs in an Array
Description
Given a 0-indexed integer array
nums
of length n
and an integer k
, return the number of pairs (i, j)
where 0 <= i < j < n
, such that nums[i] == nums[j]
and (i * j)
is divisible by k
.
Example 1:
Input: nums = [3,1,2,2,2,1,3], k = 2 Output: 4 Explanation: There are 4 pairs that meet all the requirements: - nums[0] == nums[6], and 0 * 6 == 0, which is divisible by 2. - nums[2] == nums[3], and 2 * 3 == 6, which is divisible by 2. - nums[2] == nums[4], and 2 * 4 == 8, which is divisible by 2. - nums[3] == nums[4], and 3 * 4 == 12, which is divisible by 2.
Example 2:
Input: nums = [1,2,3,4], k = 1 Output: 0 Explanation: Since no value in nums is repeated, there are no pairs (i,j) that meet all the requirements.
Constraints:
1 <= nums.length <= 100
1 <= nums[i], k <= 100
Solutions
Solution: Hash Map
- Time complexity: O(n2)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
const countPairs = function (nums, k) {
const n = nums.length;
const numMap = new Map();
let result = 0;
const getDivisibleCount = (indices, pair) => {
let count = 0;
for (const index of indices) {
if ((pair * index) % k) continue;
count += 1;
}
return count;
};
for (let index = 0; index < n; index++) {
const num = nums[index];
if (numMap.has(num)) {
const indices = numMap.get(num);
result += getDivisibleCount(indices, index);
indices.push(index);
continue;
}
numMap.set(num, [index]);
}
return result;
};