2179. Count Good Triplets in an Array
Description
You are given two 0-indexed arrays nums1
and nums2
of length n
, both of which are permutations of [0, 1, ..., n - 1]
.
A good triplet is a set of 3
distinct values which are present in increasing order by position both in nums1
and nums2
. In other words, if we consider pos1v
as the index of the value v
in nums1
and pos2v
as the index of the value v
in nums2
, then a good triplet will be a set (x, y, z)
where 0 <= x, y, z <= n - 1
, such that pos1x < pos1y < pos1z
and pos2x < pos2y < pos2z
.
Return the total number of good triplets.
Example 1:
Input: nums1 = [2,0,1,3], nums2 = [0,1,2,3] Output: 1 Explanation: There are 4 triplets (x,y,z) such that pos1x < pos1y < pos1z. They are (2,0,1), (2,0,3), (2,1,3), and (0,1,3). Out of those triplets, only the triplet (0,1,3) satisfies pos2x < pos2y < pos2z. Hence, there is only 1 good triplet.
Example 2:
Input: nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3] Output: 4 Explanation: The 4 good triplets are (4,0,3), (4,0,2), (4,1,3), and (4,1,2).
Constraints:
n == nums1.length == nums2.length
3 <= n <= 105
0 <= nums1[i], nums2[i] <= n - 1
nums1
andnums2
are permutations of[0, 1, ..., n - 1]
.
Solutions
Solution: Binary Indexed Tree
- Time complexity: O(nlogn)
- Space complexity: O(n)
JavaScript
js
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
const goodTriplets = function (nums1, nums2) {
const n = nums1.length;
const num1Indexed = Array.from({ length: n }, () => -1);
const leftTree = new BinaryIndexedTree(n);
const rightTree = new BinaryIndexedTree(n);
const leftCounts = Array.from({ length: n + 1 }, () => 0);
const rightCounts = Array.from({ length: n + 1 }, () => 0);
for (let index = 0; index < n; index++) {
const num = nums1[index];
num1Indexed[num] = index;
}
for (let index = 0; index < n; index++) {
const num = nums2[index];
const num1Index = num1Indexed[num];
leftCounts[index] = leftTree.get(num1Index);
leftTree.add(num1Index + 1, 1);
}
for (let index = n - 1; index >= 0; index--) {
const num = nums2[index];
const num1Index = num1Indexed[num];
rightCounts[index] = rightTree.get(n) - rightTree.get(num1Index);
rightTree.add(num1Index + 1, 1);
}
return leftCounts.reduce((result, count, index) => result + count * rightCounts[index], 0);
};
class BinaryIndexedTree {
constructor(n) {
this.sums = Array.from({ length: n + 1 }, () => 0);
}
add(index, delta) {
while (index < this.sums.length) {
this.sums[index] += delta;
index += index & -index;
}
}
get(index) {
let sum = 0;
while (index > 0) {
sum += this.sums[index];
index -= index & -index;
}
return sum;
}
}