Skip to content

1785. Minimum Elements to Add to Form a Given Sum

Description

You are given an integer array nums and two integers limit and goal. The array nums has an interesting property that abs(nums[i]) <= limit.

Return the minimum number of elements you need to add to make the sum of the array equal to goal. The array must maintain its property that abs(nums[i]) <= limit.

Note that abs(x) equals x if x >= 0, and -x otherwise.

 

Example 1:

Input: nums = [1,-1,1], limit = 3, goal = -4
Output: 2
Explanation: You can add -2 and -3, then the sum of the array will be 1 - 1 + 1 - 2 - 3 = -4.

Example 2:

Input: nums = [1,-10,9,1], limit = 100, goal = 0
Output: 1

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= limit <= 106
  • -limit <= nums[i] <= limit
  • -109 <= goal <= 109

 

Solutions

Solution: Greedy

  • Time complexity: O(n)
  • Space complexity: O(1)

 

JavaScript

js
/**
 * @param {number[]} nums
 * @param {number} limit
 * @param {number} goal
 * @return {number}
 */
const minElements = function (nums, limit, goal) {
  const sum = nums.reduce((result, num) => result + num);

  return Math.ceil(Math.abs(goal - sum) / limit);
};

Released under the MIT license