1785. Minimum Elements to Add to Form a Given Sum
Description
You are given an integer array nums and two integers limit and goal. The array nums has an interesting property that abs(nums[i]) <= limit.
Return the minimum number of elements you need to add to make the sum of the array equal to goal. The array must maintain its property that abs(nums[i]) <= limit.
Note that abs(x) equals x if x >= 0, and -x otherwise.
Example 1:
Input: nums = [1,-1,1], limit = 3, goal = -4 Output: 2 Explanation: You can add -2 and -3, then the sum of the array will be 1 - 1 + 1 - 2 - 3 = -4.
Example 2:
Input: nums = [1,-10,9,1], limit = 100, goal = 0 Output: 1
Constraints:
1 <= nums.length <= 1051 <= limit <= 106-limit <= nums[i] <= limit-109 <= goal <= 109
Solutions
Solution: Greedy
- Time complexity: O(n)
- Space complexity: O(1)
JavaScript
js
/**
* @param {number[]} nums
* @param {number} limit
* @param {number} goal
* @return {number}
*/
const minElements = function (nums, limit, goal) {
const sum = nums.reduce((result, num) => result + num);
return Math.ceil(Math.abs(goal - sum) / limit);
};