Skip to content

1856. Maximum Subarray Min-Product

Description

The min-product of an array is equal to the minimum value in the array multiplied by the array's sum.

  • For example, the array [3,2,5] (minimum value is 2) has a min-product of 2 * (3+2+5) = 2 * 10 = 20.

Given an array of integers nums, return the maximum min-product of any non-empty subarray of nums. Since the answer may be large, return it modulo 109 + 7.

Note that the min-product should be maximized before performing the modulo operation. Testcases are generated such that the maximum min-product without modulo will fit in a 64-bit signed integer.

A subarray is a contiguous part of an array.

 

Example 1:

Input: nums = [1,2,3,2]
Output: 14
Explanation: The maximum min-product is achieved with the subarray [2,3,2] (minimum value is 2).
2 * (2+3+2) = 2 * 7 = 14.

Example 2:

Input: nums = [2,3,3,1,2]
Output: 18
Explanation: The maximum min-product is achieved with the subarray [3,3] (minimum value is 3).
3 * (3+3) = 3 * 6 = 18.

Example 3:

Input: nums = [3,1,5,6,4,2]
Output: 60
Explanation: The maximum min-product is achieved with the subarray [5,6,4] (minimum value is 4).
4 * (5+6+4) = 4 * 15 = 60.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 107

 

Solutions

Solution: Monotonic Stack

  • Time complexity: O(n)
  • Space complexity: O(n)

 

JavaScript

js
/**
 * @param {number[]} nums
 * @return {number}
 */
const maxSumMinProduct = function (nums) {
  const MODULO = BigInt(10 ** 9 + 7);
  const size = nums.length;
  const stack = [];
  const prefixSum = new Array(size + 1).fill(0);
  let result = 0;

  nums.forEach((num, index) => (prefixSum[index + 1] = prefixSum[index] + num));

  for (let index = 0; index <= size; index++) {
    const num = nums[index];

    while (stack.length && (nums[stack.at(-1)] > num || index === size)) {
      const minValue = BigInt(nums[stack.pop()]);
      const last = stack.length ? stack.at(-1) + 1 : 0;
      const sum = BigInt(prefixSum[index] - prefixSum[last]);
      const product = BigInt(minValue * sum);

      if (result >= product) continue;
      result = product;
    }
    stack.push(index);
  }
  return result % MODULO;
};

Released under the MIT license