Skip to content

41. First Missing Positive

Description

Given an unsorted integer array nums. Return the smallest positive integer that is not present in nums.

You must implement an algorithm that runs in O(n) time and uses O(1) auxiliary space.

 

Example 1:

Input: nums = [1,2,0]
Output: 3
Explanation: The numbers in the range [1,2] are all in the array.

Example 2:

Input: nums = [3,4,-1,1]
Output: 2
Explanation: 1 is in the array but 2 is missing.

Example 3:

Input: nums = [7,8,9,11,12]
Output: 1
Explanation: The smallest positive integer 1 is missing.

 

Constraints:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1

 

Solutions

Solution: Iteration

  • Time complexity: O(n)
  • Space complexity: O(1)

 

JavaScript

js
/**
 * @param {number[]} nums
 * @return {number}
 */
const firstMissingPositive = function (nums) {
  const n = nums.length;

  for (let index = 0; index < n; index++) {
    while (nums[index] > 0 && nums[index] <= n && nums[nums[index] - 1] !== nums[index]) {
      const num = nums[index];

      [nums[num - 1], nums[index]] = [nums[index], nums[num - 1]];
    }
  }
  for (let index = 0; index < n; index++) {
    const num = index + 1;

    if (nums[index] !== num) return num;
  }
  return n + 1;
};

Released under the MIT license