2221. Find Triangular Sum of an Array
Description
You are given a 0-indexed integer array nums
, where nums[i]
is a digit between 0
and 9
(inclusive).
The triangular sum of nums
is the value of the only element present in nums
after the following process terminates:
- Let
nums
comprise ofn
elements. Ifn == 1
, end the process. Otherwise, create a new 0-indexed integer arraynewNums
of lengthn - 1
. - For each index
i
, where0 <= i < n - 1
, assign the value ofnewNums[i]
as(nums[i] + nums[i+1]) % 10
, where%
denotes modulo operator. - Replace the array
nums
withnewNums
. - Repeat the entire process starting from step 1.
Return the triangular sum of nums
.
Example 1:

Input: nums = [1,2,3,4,5] Output: 8 Explanation: The above diagram depicts the process from which we obtain the triangular sum of the array.
Example 2:
Input: nums = [5] Output: 5 Explanation: Since there is only one element in nums, the triangular sum is the value of that element itself.
Constraints:
1 <= nums.length <= 1000
0 <= nums[i] <= 9
Solutions
Solution: Simulation
- Time complexity: O(n2)
- Space complexity: O(1)
JavaScript
js
/**
* @param {number[]} nums
* @return {number}
*/
const triangularSum = function (nums) {
const n = nums.length;
for (let operator = 1; operator < n; operator++) {
for (let index = 0; index < n - operator; index++) {
const sum = nums[index] + nums[index + 1];
nums[index] = sum % 10;
}
}
return nums[0];
};